Strict Standards: Declaration of ezSQL_mysql::query() should be compatible with ezSQLcore::query() in /home/kpssders/public_html/database/ez_sql_mysql.php on line 263

Strict Standards: Declaration of ezSQL_mysql::escape() should be compatible with ezSQLcore::escape() in /home/kpssders/public_html/database/ez_sql_mysql.php on line 263
Çarpanları Ayırma Yöntemi - KPSS Dersanesi, KPSS Sınavına Hazırlık
Hoşgeldiniz Sayın Ziyaretçi; ÜYE OLUN ya da üye iseniz GİRİŞ YAPIN.
biz-sizi-arayalim
biz-sizi-arayalim
KPSS Genel Kültür
Okul öncesi eğitim vatandaşın cebini yaktı
Okul öncesi eğitim vatandaşın cebini yaktı
Aday öğretmenler il tercihi yapacaklar
Aday öğretmenler il tercihi yapacaklar
Maliye Bakanlığı 25 uzman yardımcısı alacak
Maliye Bakanlığı 25 uzman yardımcısı alacak
2015 ODTÜ Akademik Parsonel Alımı
2015 ODTÜ Akademik Parsonel Alımı

kpss-egitim-setleri
KPSS PRATİK BİLGİLER
KPSS Rehberlik
KPSS Genel Yetenek
KPSS Genel Kültür
KPSS Eğitim Bilimleri
KPSS A Alan Bilgisi
KPSS Deneme Sınavları
KPSS Videolar
Çarpanları Ayırma Yöntemi

reklam

ÇARPANLARA AYIRMA YÖNTEMLERİ
 


1) Ortak Çarpan Parantezine Alma:
Terimlerin herbirinde ortak olan ifadelerin alınıp ifadeyi çarpan durumuna getirmektir.

örnek: ax + bx + cx = x (a + b +c)

örnek: 3 (a-b) . c - 6 (a-b) . d = 3 (a-b) . (c-2d)
 


2) Gruplandırarak Çarpanlara Ayırma:
Terimler çarpanlara ayrılırken grup, grup alınarak çarpanlarına ayrılır.

örnek: ax - by + aj/ - bx = a (x +y) -b (x+y)
= (a - b) . (x + y) (gruplandırmada ortak çarpanma getirildiğine dikkat ediniz.)

örnek: a2 + ab + bc + ac = a (a + b) + c (a + b) =(a + c) . (a + b)

örnek: 2ax - 4ay - x + 2y = 2a (x - 2y) - (x - 2y) = (x-2y) .(2a-1)



3) İki Kare Farkı:
İki terimden oluşmalı, terimler arasındaki işaret (-) ve terimlerin karekökleri olmalıdır.

örnek: 81 x2 - 16 = (9x - 4) . (9x + 4)

örnek: 1 - 25a2 = (1 - 5a) . (1 + 5a)

4)  İki Küp Toplam ve Farkı:
örnek: a3 + b3 = (a + b). (a2 - ab + b2)
örnek: 1-27x3 = 13 - (3x)3 = (1-3x). (1 + 3x + 9x2)
örnek: 27a3+8 = (3a)3+(2)3 = (3a+2) . (9a2-6a+4)
örnek: 3-24x3=3(1 -8x3) = 3[13-(2x)3] = 3(1 -2x) . (1 +2x + 4x2)

5)  Tamkareli İfadeler:

a2 + 2ab + b2 = (a + b)2 = (a + b). (a + b)

örnek: x2+ 2 + \ = (x + i)2= (x +1). (x + 1)

6) Ax2 + Bx + c Şeklindeki Üç Terimli İfadeler:

Birinci ve üçüncü terimlerin çarpanları alt alta yazılarak çapraz çarpıldığından sonra toplanır. Toplamın sonucu orta terimi veriyorsa karşılıklı olarak terimler alınıp çarpım durumunda yazılır.

örnek: x2 - x - 2 = (x - 2) . (x + 1)


Etiketler : Çarpanları ayırma yöntemi


Facebook Yorumlar

KPSS A